
Pintos Project 1 
Threads

COS 450 - Fall 2018

1

Goal

• Fix Alarm Clock (remove busy-wait sleeping)


• Priority Scheduler and Priority Donation


• Implement BSD Scheduler

Make Pintos multi-threaded

2 There are three fundamental parts to 
this project. Though the priority 
scheduler and priority donation can 
be done sequentially. They are 
(somewhat) in order of increasing 
difficulty.

Getting Started
• Where do I work?


• in src/threads and src/devices


• compile in src/threads


• Testing


• make check (and make grade)


• make build/tests/threads/test.result

3 If you find yourself outside of these 
locations you might be getting off 
track. Most, if not all solutions, don’t 
require any code outside of threads 
and devices.


make grade will give you an idea of 
what score you will get on the code 
portion of the project. Run it 
multiple times to ensure you get 
consistent results.

COS450-F18-02-Pintos Project 1 - September 10, 2018



Important Files
• Likely files you will modify (more is less)


• threads/thread.c

• handles thread creation, modification, 


• Scheduling code goes here


• threads/synch.c

• Basic synchronization code


• devices/timer.c

• handles busy-sleeping


• calls thread_tick() in threads.c every timer tick.

4 As with the locations, most 
solutions only need to modify these 
files. If you go too far outside of 
these (except for the BSD scheduler 
maybe) you might be off track.

Useful Places

• debug.h -- ASSERT() and UNUSED


• list.h -- Generic linked-list functions


• stdio.h -- in-kernel printf()


• threads/interrupt.h --intr_yield_on_return()

• threads/thread.c -- thread_tick()

5 In these locations you will find utility 
functions, defines, and routines that 
you should use in your code. Don’t 
invent your own list when one 
already exists in the system. Learn 
how to use what’s provided.

Threads

• Defined in thread.h


• Each is stored on a 4KB page


•THREAD_MAGIC

• Remainder of page is for stack

6 The `thread` is the fundamental thing 
that Pintos manages, our text refers 
to it as a process. thread.h defines 
the structure that Pintos uses to 
maintain the state of a thread and all 
the related information it needs to 
manage it. We will be changing this 
in just about all our projects.

COS450-F18-02-Pintos Project 1 - September 10, 2018



Initial Thread

• main() in threads/init.c  
started by boot loader


• Starts the thread system and then promotes itself to a 
proper thread.


• Parses command-line arguments


• Starts other threads with thread_create()

WARNING: 
Not created by 

thread_create()

7 The first thread in the system is 
special. It’s not created by 
thread_create(). thread_create() 
effectively clones the current thread 
into a new one. When the system is 
starting there’s no thread to clone 
so Pintos has to fake it.

Scheduling

• Preemptive scheduling


• Next thread chosen by 
next_thread_to_run()


• Context-switch in assembly 
No need to change it.

8

Thread State

• THREAD_RUNNING 
the currently running thread (should be only one)


• THREAD_READY 
ready to be scheduled, on ready_list


• THREAD_BLOCKED 
unable to run, not on ready_list


• THREAD_DYING

9

COS450-F18-02-Pintos Project 1 - September 10, 2018



Synchronization

• Interrupt Disabling 
Can affect performance, use sparingly


• Semaphores


• Locks


• Monitors

NOTE: 
Interrupt disabling 

is used in the kernel 
to synchronize 

interrupt handlers

10 Pintos provides several 
synchronization mechanisms 
already. You should not invent your 
own, use these to implement your 
solution.

Requirements

• Non busy sleep (Alarm Clock)


• Priority Scheduling


• Allow processes to modify their priority


• Priority Donation (for locks)


• BSD Scheduler (fixed-point math)

11

Alarm Clock
Current state of affairs…

“busy wait”

12 Take a look at the existing 
timer_sleep() code in devices/timer.c

COS450-F18-02-Pintos Project 1 - September 10, 2018



Alarm Clock

timer_sleep()… 

• block the calling thread

• allow other threads to execute

• unblock after number of timer ticks


NOTE: multiple threads may call timer_sleep()

When a thread is sleeping,  
it should not consume CPU time

13 Take a look at the existing 
timer_sleep() code in devices/timer.c

Alarm Clock
WARNING: 

Part of your code 
Will be in an  

interrupt handler 
pay close attention to 

concurrent data access 

14

Threads and Scheduling

ready_list

CPU

thread_current()

wait list 
for disk

wait list 
for lock

wait list 
for ?

schedule()

timer_tick() block

unblock

thread thread

Your 
Code 
Here!

15

COS450-F18-02-Pintos Project 1 - September 10, 2018



Priority Scheduling

Threads might get a higher priority when..


• A new thread is created


• A thread is unblocked  
(or woken up)


• A thread dies

Make sure at any point in time,

the highest priority thread is running

NOTE: 
Sleeping threads 
don’t wake early!

16

Priority Donation

• Multiple Threads may donate to a thread


• Can only donate to a single thread


• Donations revoked when resource freed


• Nested donations (A -> B -> C)

Prevent priority inversion by allowing 
high-priority threads to donate their status 

to lower priority threads

17

BSD Scheduler

• Measure CPU usage every clock tick


• Decay CPU usage for all, once per second


• Calculate system load average


• Update priorities every 4 ticks


• Run thread with highest priority

Using multi-level feedback queue 
scheduling

18

COS450-F18-02-Pintos Project 1 - September 10, 2018



Implementation Order
• Alarm Clock


• Initial set/get priority()


• Prioritized thread blocking and unblocking


• Priority Scheduler


• Priority Donation


• Fixed-point math and BSD Scheduler

19

Tips from the after-code

• Read, think, design, then code


• Keep it simple, use lists


• Avoid duplicating code


• Verify errors and watch warnings


• Keep context of code execution in mind 
(interrupt, scheduler, other)

20

Don’t forget the 
DESIGNDOC

It’s 50% of your grade


A few good hours here is worth more  
than the last 5% on the test suite!

21

COS450-F18-02-Pintos Project 1 - September 10, 2018



End
Pintos Project 1

22

COS450-F18-02-Pintos Project 1 - September 10, 2018


